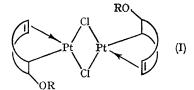
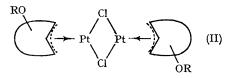

The Crystal Structure of [PtCl(OMe)(dicyclopentadiene)]


By W. A. WHITLA, H. M. POWELL, and L. M. VENANZI


(Chemical Crystallography Laboratory and Inorganic Chemistry Laboratory, South Parks Road, Oxford)

An investigation by Chatt *et al.*¹ of the compounds prepared by Hofmann and von Narbutt² led to the conclusion that complexes [PtCl(OR)(dicyclopentadiene)] were to be formulated as (I). The subsequent discovery that palladium(II) and platinum(II) can form complexes containing π -allylic systems³ re-opened the question of the structure of compounds (I) as the physical evidence used by Chatt *et al.* for the structural assignment would be equally compatible with the π -allylic structure (II). More recently, however, Stille *et al.*,⁴ on the basis of an n.m.r. study of [PtCl(OMe)-(dicyclopentadiene)(pyridine)] concluded that structure (I) was correct.

To resolve this uncertainty, a crystal structure determination of [PtCl(OMe)(dicyclopentadiene)] was undertaken. This compound crystallises in the space group C2/c with a = 24.45, $b = 7.50_5$, c = 12.19 Å, $\beta = 105.6^\circ$. For the 2091 photographically observed independent reflections, after

four rounds of isotropic least-squares refinement, a value of R = 11.1% was obtained. The compound has structure (I). The environment of the platinum atom is essentially square-planar, each half of

the molecule being related to the other half by a crystallographic centre of symmetry. The projection along the *b*-axis of the molecule, with the bond lengths and angles around the platinum atom, is shown in the Figure.

One interesting feature is apparent: the two metal-chlorine distances are significantly different and the longer bond is that in trans-position to the carbon atom σ -bonded to the platinum. Bridging Pd-Cl bonds of different lengths have been observed in [Pd₂Cl₄(PhCH:CH₂)₂],⁵ but in this compound the longer bond is in trans-position to the co-ordinated double bond. As there is evidence that lengthening of bond-distances is associated with a strong trans-effect,⁶ it appears from the present work that a σ -bonded carbon atom exerts a stronger *trans*-effect than a π -bonded olefin.

(Received, April 15th, 1966; Com. 243.)

- ¹ J. Chatt, L. M. Vallarino, and L. M. Venanzi, J. Chem. Soc., 1957, 2496.
- ² K. A. Hofmann and J. von Narbutt, Ber., 1908, 41, 1625.
- ³ M. L. H. Green and P. L. I. Nagy, Adv. Organometallic Chem., 1964, 2, 325. ⁴ J. K. Stille, R. A. Morgan, D. D. Whitehurst, and J. R. Doyle, J. Amer. Chem. Soc., 1965, 87, 3282.
- ⁵ J. R. Holden and N. C. Baenziger, *J. Amer. Chem. Soc.*, 1958, 80, 4987. ⁶ F. Basolo and R. G. Pearson, *Progr. Inorg. Chem.*, 1962, 4, 381.